How does saltwater intrusion alter anaerobic microbial metabolism in a freshwater wetland? Amy J Burgin¹, Valerie A. Schoepfer¹, Ashley M. Helton², Marcelo Ardón³, Emily S. Bernhardt², Robert A. Payn⁴, and Geoffery C. Poole⁴ #### Sea Level Rise Predictions for N.C. By 2100, North Carolina will lose 2330 - 5180 sq. kilometers of coastline (900-2000 square miles) Increasing air temperatures predicted to increase drought What are the biogeochemical implications of SLR and salt water intrusion for coastal wetlands? Figure 3: Map of Coastal North Carolina and Sea Level Rise (Source: Poulter and, Halpin 2008). # Timberlake Restoration Project - Ashley Helton (11:20) - Simulating the Influence of Salt Water Intrusion on Coupled Elemental Cycles - Valerie Schoepfer (11:40) - The Effect of Salt Water Intrusion on Coupled Iron and Sulfur Cycling - Marcelo Ardón (2:20) - Salt Water Intrusion Alters N and C Export from a Restored Coastal Wetland - Kristy Hopfensperger (4:00) - Plant Chemistry in a Freshwater Wetland Experiencing Salt Water Intrusion #### Timberlake Restoration Project - Privately owned 1000ha mitigation bank - Focus → 440ha agricultural field (formerly pumped) - <5 m range in surface elevation - Freshwater with wind-driven tides & bidirectional flow #### Timberlake Timeline #### WETLAND FARMING 1980 Swamps, pocosins drained 1985 First crops planted 1986-2001 Corn, soy 1996 GDSMB buys site 2004 Last crops 2005 2007 Earth- Canals moving plugged; Seedlings pumping planted stops RESTORATION # Timberlake Overview # Timberlake Overview # 2007 & 2008 Drought = Saltwater intrusion Yr 4 Yr 5 Yr 3 Yr 2 Yr 1 Burgin et al. (2011) Frontiers in Ecology and the Environment #### Biogeochemical Reality is Messy: Goal: Create a simplified reality to examine how individual components of nitrate, salt and sulfate inputs affect anaerobic pathways and microbial communities at Timberlake. - Q₁: Does previous exposure to salt water affect how soil microbial communities react to simulated salt water intrusion? - Q₂: Are their differential effects of salt and sulfate on anaerobic microbial communities? - Q₃: How salt water intrusion affect the denitrification capacity of coastal wetlands? # "Simplified Reality" = Slurries **Exposed to Salt** **Unexposed to Salt** #### **Three-way Full Factorial:** $$^{15}NO_{3}^{-} = 0.1, 1, 3 \text{ mg N L}^{-1}$$ (7, 71, 214 μ M) Salt = 0 (fresh), 2, 4 ppt $$SO_4^{2-} = 5, 50, 500 \text{ mg L}^{-1}$$ (52, 520, 5205 µM) 9 reps of the same trt combination Destructively harvested over 3 days Analyzed for: CH_4 (GC), NO_3^- (colorimetric) $^{30}N_2$ = denitrification (MIMS) # "Simplified Reality" = Slurries Exposed to Salt **Unexposed to Salt** #### Three-way Full Factorial: $^{15}NO_{3}^{-} = 0.1, 1, 3 \text{ mg N L}^{-1}$ (7, 71, 214 μ M) Salt = 0 (fresh), 2, 4 ppt $SO_4^{2-} = 5, 50, 500 \text{ mg L}^{-1}$ (52, 520, 5205 µM) #### Nitrate Reduction – Salt & Nitrate Effects [NO₃] controls nitrate reduction rates. Salt does not consistently influence nitrate reduction capacity. #### Nitrate Reduction - Salt & Sulfate Effects Neither SO₄²⁻ nor Salt influence nitrate reduction capacity. #### Denitrification – Salt & Nitrate Effects [NO₃] controls denitrification rates Clear salt effect on denitrification with excess NO₃-Unexposed > Exposed denitrification rates #### Denitrification – Salt & Sulfate Effects Increased SO₄²⁻ does not effect denitrification rates. #### Methanogenesis – Salt & Nitrate Effects Salt stimulates methane in the unexposed, but not exposed At high salt, increasing [NO₃-] decreases methane #### Methanogenesis – Salt & Sulfate Effects High sulfate stimulates methane in exposed, but not unexposed At high salt, increasing [NO₃-] decreases methane # Summary of Findings - Q₁: Does previous exposure to salt water affect how soil microbial communities react to simulated salt water intrusion? - Yes, particularly for methane production. - Q₂: Are their differential effects of salt and sulfate on anaerobic microbial communities? - Yes, particularly for methane production. Exposed sites responded to increased sulfate, unexposed responded to increased salt. - Q₃: How salt water intrusion affect the denitrification capacity of coastal wetlands? - Maybe. Does not affect nitrate reduction, but may affect denitrification. # Implications for Coastal Wetland Biogeochemistry under Salt Water Intrusion - Increased methane production in areas previously exposed and under continual exposure - Wetlands may still reduce/remove nitrate, but increased salt may shift the reduction away from denitrification to other retention processes Figure 3: Map of Coastal North Carolina and Sea Level Rise (Source: Poulter and, Halpin 2008). #### Acknowledgements - Medora Burke-Scoll and Anna Fedders - Terry Loecke - Kristy Hopfensperger - Sarah Harvey, Erin Cull, Melanie Stall, James Detraz, and Geraldine Nogaro - NSF Ecosystems ### Drought-induced saltwater intrusion ### Spatial and temporal variability in SWI ### 5 Year Outflow Conductivity Record #### Nitrate Reduction Rates $\mathcal{L}[NO_3] = \text{Higher } NO_3$ reduction rates; no site difference #### **Denitrification Rates** [NO₃] controls dnt rates; at 1 NO3, 1 salt decreases dnt Effects Unexposed more than Exposed #### Fe Reduction No influence of [NO₃]; salt*site interaction Unexposed > Exposed? #### Methanogenesis Everything effects Methane, mostly [NO₃-] Salt vs. [SO₄²-] mechanisms in different sites # **Timberlake Overview** ### Testing Mechanisms at Multiple Scales - Field-scale - hydrologic (wet to dry) and saltwater (fresh to 4 ppt) gradients with 2 depths (0-5, 10-15 cm) - June during early intrusion - Sulfate reduction rates, Fe reduction potential, Methanogenesis potential - Bench-scale manipulations - NO₃-, SO₄-, NaCl at 3 levels (L, M, H) - Exposed and Unexposed sediments - Sulfate reduction rates, Fe reduction, Methanogenesis potential # Sulfate Reduction Rates (35S) #### Fe Reduction Potential ### Methanogenesis Potential